Givaro
examples/Polynomial/trunc_arith.C

NO DOC

// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
#include <iostream>
#include <givaro/givrandom.h>
#include <givaro/givtimer.h>
#include <givaro/gfq.h>
#include <givaro/givpoly1.h>
#include <givaro/givtruncdomain.h>
using namespace Givaro;
long long TTcount = 0;
bool TestAdd(const TruncDom< GFqDom<int> >& DP, const TruncDom< GFqDom<int> >::Element& P, const TruncDom< GFqDom<int> >::Element& Q, size_t d1, size_t d2)
{
++TTcount;
TruncDom< GFqDom<int> >::Element R, T, V;
DP.add ( R, P, Q, (int64_t)d1, (int64_t)d2); // R = P*Q;
// DP.write( DP.write(
// std::cout << "[(" , P ) << ") + (", Q) << ")]_" << d1 << '^' << d2 ;
// DP.write(std::cout << " = " , R) << std::endl;
DP.add (T, P, Q);
V=T;
DP.truncin(V,(int64_t)d1,(int64_t)d2);
if( DP.areNEqual( V, R) ) {
std::cerr << "ERROR ADD:" << TTcount << std::endl;
DP.write(std::cout << " R: " , R) << std::endl;
DP.write(std::cout << " T: " , T) << std::endl;
DP.write(std::cout << " V: " , V) << std::endl;
Degree dP; DP.degree(dP,P);
Degree dQ; DP.degree(dQ,Q);
Degree vP; DP.val(vP,P);
Degree vQ; DP.val(vQ,Q);
std::cerr << "vR: " << vP << ", dR: " << dP << ", vP: " << vQ << ", dP: " << dQ << ", v: " << d1 << ", d: " << d2 << std::endl;
return false;
}
return true;
}
bool TestSub(const TruncDom< GFqDom<int> >& DP, const TruncDom< GFqDom<int> >::Element& P, const TruncDom< GFqDom<int> >::Element& Q, size_t d1, size_t d2)
{
++TTcount;
TruncDom< GFqDom<int> >::Element R, T, V;
DP.sub ( R, P, Q, (int64_t)d1, (int64_t)d2); // R = P*Q;
// DP.write( DP.write(
// std::cout << "[(" , P ) << ") + (", Q) << ")]_" << d1 << '^' << d2 ;
// DP.write(std::cout << " = " , R) << std::endl;
DP.sub (T, P, Q);
V=T;
DP.truncin(V,(int64_t)d1,(int64_t)d2);
if( DP.areNEqual( V, R) ) {
std::cerr << "ERROR SUB:" << TTcount << std::endl;
DP.write(std::cout << " R: " , R) << std::endl;
DP.write(std::cout << " T: " , T) << std::endl;
DP.write(std::cout << " V: " , V) << std::endl;
Degree dP; DP.degree(dP,P);
Degree dQ; DP.degree(dQ,Q);
Degree vP; DP.val(vP,P);
Degree vQ; DP.val(vQ,Q);
std::cerr << "vR: " << vP << ", dR: " << dP << ", vP: " << vQ << ", dP: " << dQ << ", v: " << d1 << ", d: " << d2 << std::endl;
return false;
}
return true;
}
bool TestMul(const TruncDom< GFqDom<int> >& DP, const TruncDom< GFqDom<int> >::Element& P, const TruncDom< GFqDom<int> >::Element& Q, size_t d1, size_t d2)
{
++TTcount;
TruncDom< GFqDom<int> >::Element R, T, V;
DP.mul ( R, P, Q, (int64_t)d1, (int64_t)d2); // R = P*Q;
// DP.write( DP.write(
// std::cout << "[(" , P ) << ") + (", Q) << ")]_" << d1 << '^' << d2 ;
// DP.write(std::cout << " = " , R) << std::endl;
DP.mul (T, P, Q);
V=T;
DP.truncin(V,(int64_t)d1,(int64_t)d2);
if( DP.areNEqual( V, R) ) {
std::cerr << "ERROR MUL:" << TTcount << std::endl;
DP.write(std::cout << " R: " , R) << std::endl;
DP.write(std::cout << " T: " , T) << std::endl;
DP.write(std::cout << " V: " , V) << std::endl;
Degree dP; DP.degree(dP,P);
Degree dQ; DP.degree(dQ,Q);
Degree vP; DP.val(vP,P);
Degree vQ; DP.val(vQ,Q);
std::cerr << "vR: " << vP << ", dR: " << dP << ", vP: " << vQ << ", dP: " << dQ << ", v: " << d1 << ", d: " << d2 << std::endl;
return false;
}
return true;
}
bool TestAxpy(const TruncDom< GFqDom<int> >& DP, const TruncDom< GFqDom<int> >::Element& P, const TruncDom< GFqDom<int> >::Element& Q, const TruncDom< GFqDom<int> >::Element& G, size_t d1, size_t d2)
{
++TTcount;
TruncDom< GFqDom<int> >::Element R, T, V;
DP.axpy ( R, P, Q, G, (int64_t)d1, (int64_t)d2); // R = P*Q;
// DP.write( DP.write(
// std::cout << "[(" , P ) << ") + (", Q) << ")]_" << d1 << '^' << d2 ;
// DP.write(std::cout << " = " , R) << std::endl;
DP.axpy (T, P, Q, G);
V=T;
DP.truncin(V,(int64_t)d1,(int64_t)d2);
if( DP.areNEqual( V, R) ) {
std::cerr << "ERROR Axpy:" << std::endl;
DP.write(std::cout << " P: " , P) << std::endl;
DP.write(std::cout << " Q: " , Q) << std::endl;
DP.write(std::cout << " G: " , G) << std::endl;
DP.write(std::cout << " R: " , R) << std::endl;
DP.write(std::cout << " T: " , T) << std::endl;
DP.write(std::cout << " V: " , V) << std::endl;
Degree dP; DP.degree(dP,P);
Degree dQ; DP.degree(dQ,Q);
Degree dG; DP.degree(dG,G);
Degree vP; DP.val(vP,P);
Degree vQ; DP.val(vQ,Q);
Degree vG; DP.val(vG,G);
std::cerr << "vP: " << vP << ", dP: " << dP << ", vQ: " << vQ << ", dQ: " << dQ << ", vG: " << vG << ", dG: " << dG << ", v: " << d1 << ", d: " << d2 << std::endl;
return false;
}
return true;
}
bool TestAxmy(const TruncDom< GFqDom<int> >& DP, const TruncDom< GFqDom<int> >::Element& P, const TruncDom< GFqDom<int> >::Element& Q, const TruncDom< GFqDom<int> >::Element& G, size_t d1, size_t d2)
{
++TTcount;
TruncDom< GFqDom<int> >::Element R, T, V;
DP.axmy ( R, P, Q, G, (int64_t)d1, (int64_t)d2); // R = P*Q;
// DP.write( DP.write(
// std::cout << "[(" , P ) << ") + (", Q) << ")]_" << d1 << '^' << d2 ;
// DP.write(std::cout << " = " , R) << std::endl;
DP.axmy (T, P, Q, G);
V=T;
DP.truncin(V,(int64_t)d1,(int64_t)d2);
if( DP.areNEqual( V, R) ) {
std::cerr << "ERROR Axmy:" << std::endl;
DP.write(std::cout << " R: " , R) << std::endl;
DP.write(std::cout << " T: " , T) << std::endl;
DP.write(std::cout << " V: " , V) << std::endl;
Degree dP; DP.degree(dP,P);
Degree dQ; DP.degree(dQ,Q);
Degree vP; DP.val(vP,P);
Degree vQ; DP.val(vQ,Q);
std::cerr << "vR: " << vP << ", dR: " << dP << ", vP: " << vQ << ", dP: " << dQ << ", v: " << d1 << ", d: " << d2 << std::endl;
return false;
}
return true;
}
bool TestMaxpy(const TruncDom< GFqDom<int> >& DP, const TruncDom< GFqDom<int> >::Element& P, const TruncDom< GFqDom<int> >::Element& Q, const TruncDom< GFqDom<int> >::Element& G, size_t d1, size_t d2)
{
++TTcount;
TruncDom< GFqDom<int> >::Element R, T, V;
DP.maxpy ( R, P, Q, G, (int64_t)d1, (int64_t)d2); // R = P*Q;
// DP.write( DP.write(
// std::cout << "[(" , P ) << ") + (", Q) << ")]_" << d1 << '^' << d2 ;
// DP.write(std::cout << " = " , R) << std::endl;
DP.maxpy (T, P, Q, G);
V=T;
DP.truncin(V,(int64_t)d1,(int64_t)d2);
if( DP.areNEqual( V, R) ) {
std::cerr << "ERROR Maxpy:" << std::endl;
DP.write(std::cout << " R: " , R) << std::endl;
DP.write(std::cout << " T: " , T) << std::endl;
DP.write(std::cout << " V: " , V) << std::endl;
Degree dP; DP.degree(dP,P);
Degree dQ; DP.degree(dQ,Q);
Degree vP; DP.val(vP,P);
Degree vQ; DP.val(vQ,Q);
std::cerr << "vR: " << vP << ", dR: " << dP << ", vP: " << vQ << ", dP: " << dQ << ", v: " << d1 << ", d: " << d2 << std::endl;
return false;
}
return true;
}
int main(int argc, char ** argv) {
{
int64_t seed = (argc>1?atoi(argv[1]):BaseTimer::seed());
std::cerr << "seed: " << seed << std::endl;
GFqDom<int> Z101( 101, 1 ); // integers modulo 101
// Polynomials over Z101, with X as indeterminate
TruncDom< GFqDom<int> > DP101( Z101, Indeter("X") );
TruncDom< GFqDom<int> >::Element P, Q, R, monomial;
GFqDom<int>::Element tmp;
DP101.assign( P, Z101.init(tmp,5) ); // P is degree 0 polynomial : 5 modulo 101
DP101.write( std::cout << "P: " , P )<< std::endl;
DP101.init( monomial, Degree(1), 33U) ; // -33 X
DP101.write( std::cout << "m: " , monomial )<< std::endl;
Degree deg,val;
DP101.degree(deg,monomial);
DP101.val(val,monomial);
DP101.write( std::cout << "[m]_" << val << '^' << deg << ": " , monomial )<< std::endl;
DP101.addin( P, monomial ); // P += monomial
DP101.write( std::cout << "P: " , P )<< std::endl;
DP101.init( monomial, Degree(2), 12U) ; // 12 X^2
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.addin( P, monomial ); // P is now 5-33*X+12*X^2
DP101.write( std::cout << "P: " , P )<< std::endl;
// // DP101.read( std::cin, P); // would read P as a succession of integers :
// // deg leadcoeff (lead-1)coeff ... unitcoeff
Q = P;
DP101.write( std::cout << "P: " , P )<< std::endl;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.init( Q, Degree(0), 6U );
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.init( monomial, Degree(4), 3U);
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.addin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.init( monomial, Degree(1), 75U);
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.addin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.init( monomial, Degree(3), 45U);
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.subin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
// Q is now 3*X^4+75*X-45*X^3+6
DP101.mulin( Q, Degree(15) ) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.mulin( monomial, Degree(32));
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.addin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.subin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.divin( Q, Degree(5) ) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.divin( monomial, Degree(12));
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.addin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.subin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.divin( monomial, Degree(10));
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.addin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.subin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.divin( monomial, Degree(10));
DP101.write( std::cout << "m: " , monomial )<< std::endl;
DP101.addin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.subin( Q, monomial) ;
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.setval(Q);
DP101.write( std::cout << "Q: " , Q )<< std::endl;
DP101.mulin( P, Degree(15) ) ;
DP101.mul ( R, P, Q); // R = P*Q;
DP101.write( DP101.write(
std::cout << "(" , P ) << ") * (", Q) << ")";
DP101.write(std::cout << " = " , R) << std::endl;
DP101.mul ( R, P, Q, Degree(28), Degree(30)); // R = P*Q;
DP101.write( DP101.write(
std::cout << "[(" , P ) << ") * (", Q) << ")]_28^30";
DP101.write(std::cout << " = " , R) << std::endl;
DP101.mul ( R, P, Q, Degree(0), Degree(30)); // R = P*Q;
DP101.write( DP101.write(
std::cout << "[(" , P ) << ") * (", Q) << ")]_0^30";
DP101.write(std::cout << " = " , R) << std::endl;
DP101.mul ( R, P, Q, Degree(28), Degree(100)); // R = P*Q;
DP101.write( DP101.write(
std::cout << "[(" , P ) << ") * (", Q) << ")]_28^100";
DP101.write(std::cout << " = " , R) << std::endl;
DP101.mul ( R, P, Q, Degree(4), Degree(10)); // R = P*Q;
DP101.write( DP101.write(
std::cout << "[(" , P ) << ") * (", Q) << ")]_4^10";
DP101.write(std::cout << " = " , R) << std::endl;
DP101.mul ( R, P, Q, Degree(75), Degree(100)); // R = P*Q;
DP101.write( DP101.write(
std::cout << "[(" , P ) << ") * (", Q) << ")]_75^100";
DP101.write(std::cout << " = " , R) << std::endl;
DP101.setval(R);
DP101.write( std::cout << "R: " , R )<< std::endl;
DP101.mulin( Q, Degree(3) ) ;
DP101.add ( R, P, Q); // R = P*Q;
DP101.write( DP101.write(
std::cout << "(" , P ) << ") + (", Q) << ")";
DP101.write(std::cout << " = " , R) << std::endl;
/*
DP101.gcd ( R, P, Q); //
DP101.write( DP101.write( DP101.write(
std::cout << "gcd(", P ) << ",", Q) << ") = ", R) << std::endl;
DP101.lcm ( R, P, Q); //
DP101.write( DP101.write( DP101.write(
std::cout << "lcm(", P ) << ",", Q) << ") = ", R) << std::endl;
DP101.lcm ( R, Q, P); //
DP101.write( DP101.write( DP101.write(
std::cout << "lcm(", Q ) << ",", P) << ") = ", R) << std::endl;
*/
}
return 0;
}